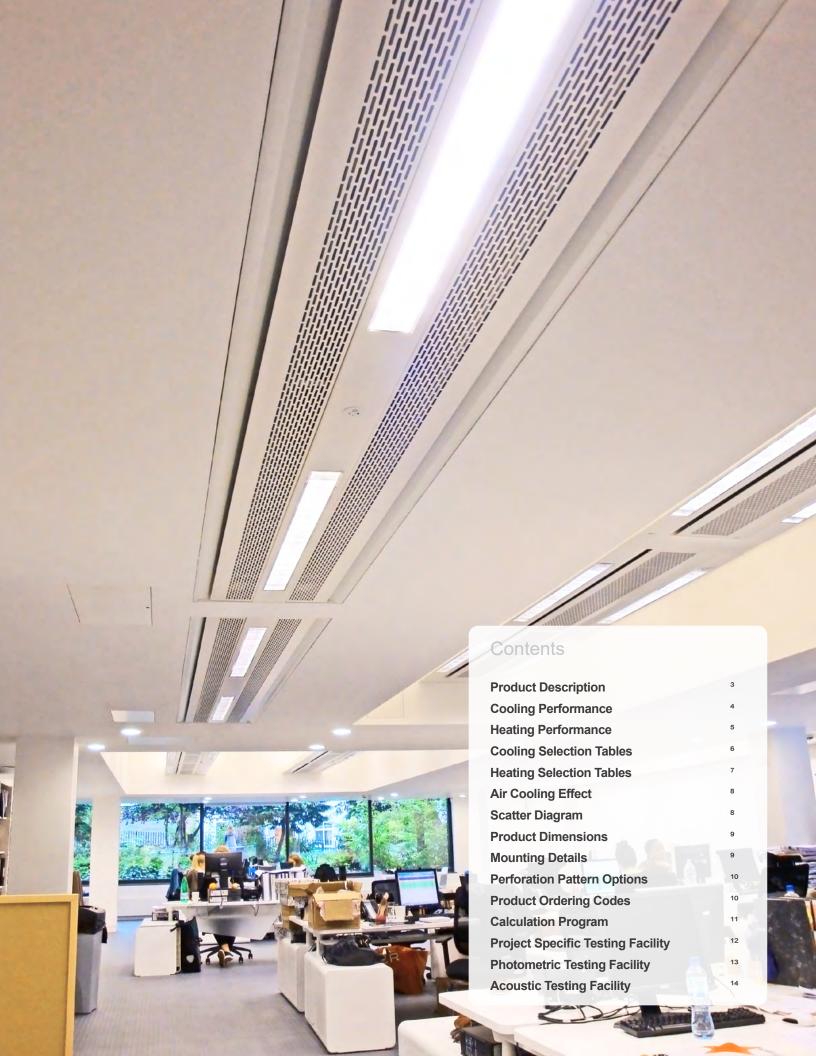
the future of space conditioning

# Compact<sup>™</sup>


## active chilled beam











## **Product Description**

Compact is one of the FTF Group's latest range of high performance Chilled Beams. Energy efficiency has been a key driver for such advancements in the FTF Groups Chilled Beam Technology.

Compact is only <sup>5</sup>.2" deep and can achieve up to <sup>1175</sup> BTU / hr/ft total cooling (based on <sup>18</sup>dTF and <sup>16</sup> CFM/ft for a <sup>6</sup>ft long beam, supplied at <sup>60</sup>°F with a <sup>0</sup>.4 inH<sub>2</sub>O).

The Compact beam contains a number of Patented performance enhancing features and as can be expected from the FTF Group brand, the Compact beam is designed to be easily tailored to suit the unique parameters of individual project sites, for the optimum product/system efficiencies. This is partly achieved by the "burst nozzle" arrangement that not only encourages induction, but also reduces noise. Given the size and amount of burst nozzles being appropriately quantified for each project, this provides consistent jet velocities, equal distribution of the air discharge and continuous induction through the heat exchanger (battery). There are no dead spots due to plugging back nozzles from a standard pitch or having to adjust the pressure in the system to suit the amount of open standard nozzle sizes as associated with many competitors' Active Beams as dead spots and/or reduced jet velocities decrease their cooling capacities/efficiencies.

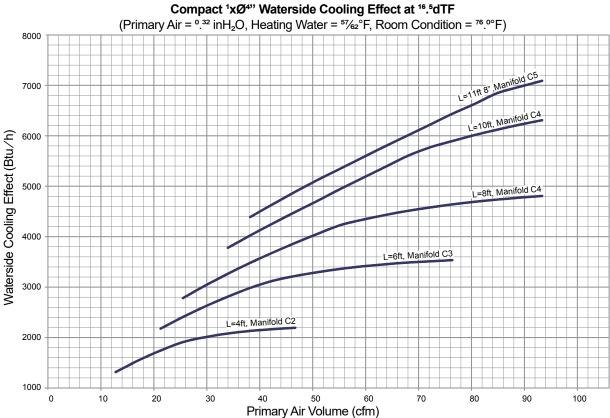
Heat exchanger batteries are also fitted with extruded aluminum profiles to not only enhance performance but also provide a continuous clip on facility for the underplates. This arrangement keeps the underplates true and flat for longer lengths, even up to <sup>11</sup>ft <sup>8</sup>".

Compact beams all have a "closed back", this means that all induced air (recirculated room air) is induced through the underplate within the room space to avoid any need for perimeter flash gaps and/or openings in the ceiling system. This also provides for a better quality of recirculated air as the recirculated air does not mix with any air from the ceiling void. The induction ratio of Compact it typically <sup>4</sup>-<sup>5</sup> times that of the supply air (fresh air) rate.

The Compact Chilled Beam outer casing is constructed from extruded aluminum and zintec pressed steel. The casing facilitates an aluminum burst nozzle strip (project specific) and a high performance heat exchange battery constructed from copper and aluminum. Beams are available in lengths from <sup>4</sup>ft up to <sup>11</sup>ft <sup>8</sup>" in <sup>4</sup>" increments. Typically <sup>2</sup>ft wide (<sup>1</sup>. <sup>6</sup>ft wide is also available).

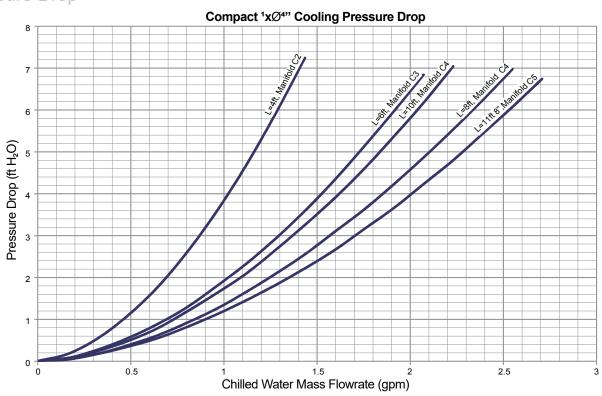


In addition to Compact's high cooling performance capability of in excess of <sup>1100</sup> BTU/hr/ft, Compact can operate well and induce at low air volumes, as little as <sup>2</sup> CFM/ft and even with a low static pressure of just <sup>0.16</sup> inH<sub>2</sub>O. Likewise Compact can handle high air volumes up to <sup>18</sup> CFM/ft and up to <sup>0.48</sup> inH<sub>2</sub>O. Please note however that these high air volumes should be avoided wherever possible and are the absolute maximum and should not ever be exceeded. As a "rule of thumb" <sup>15</sup> CFM/ft from a <sup>2</sup> way discharge beam is the maximum for occupancy comfort compliance to BS EN <sup>7730</sup>.

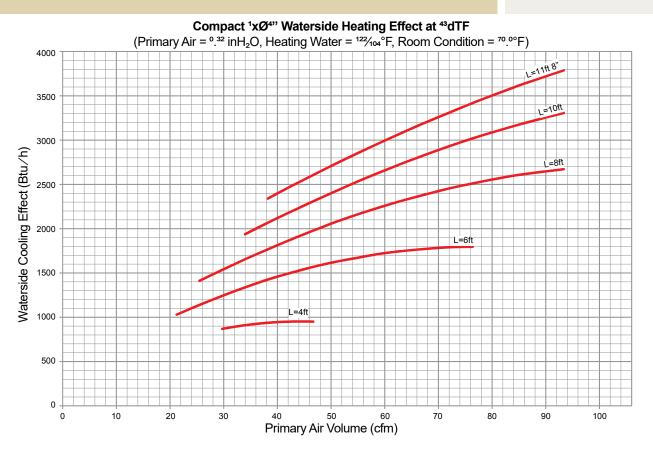

Compact can have integrated heating with separate connections (<sup>2</sup> pipe connections for cooling and <sup>2</sup> pipes for heating).

The maximum total supply air for the product is limited to <sup>106</sup> CFM. If the total air volume is more than <sup>106</sup> CFM or if you require increased heating performance, refer to the Ultima™ or Eco™ range of Active Chilled Beams by the FTF Group. Visually both units appear identical from the underside.

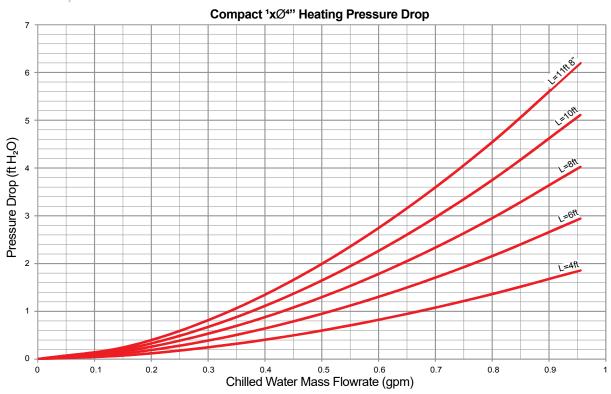
#### At a glance


- Shallow depth (only 5,2").
- High output (1175 BTU/hr/ft).
- Optimize discharge nozzle sizes and pitch factory set to best suit project requirements.
- Coanda effect is initiated within the beam.
- Smooth curved discharge slot as opposed to traditional faceted discharge slots for improved aesthetics.
- Discharge veins are concealed within the beam for improved aesthetics.
- Fan shaped distribution for increased occupancy comfort.
- Unique fast fixing or removable underplates that prevents any sagging even on long beam lengths of <sup>11</sup>ft <sup>8</sup>".
- Various different perforation patterns available for removable underplates.
- Multiple manifold variants to enable reduced chilled (and LTHW, if applicable) water mass flow rates to be facilitated for increased energy efficiencies.
- Operates well at "Low Pressure" and "Low Air Volume" for increased energy efficiencies.
- Provides indoor climate in accordance with BS EN ISO 7730 / ASHRAE 55.

# Cooling Performance




## Cooling figures are based on a cooling & heating beams, additional cooling is possible with a cooling only product - contact the FTF Group for more information.


### Pressure Drop



# **Heating Performance**



#### Pressure Drop



## **Cooling Selection Tables**

### Cooling at 0.24 Nozzle Pressure

|       | Pressure         |           |                      |                |                         |              |         |                | Wa                      | iter         |         |                |                         |           |         |                      |                         |
|-------|------------------|-----------|----------------------|----------------|-------------------------|--------------|---------|----------------|-------------------------|--------------|---------|----------------|-------------------------|-----------|---------|----------------------|-------------------------|
| 0,24  | inH₂O<br>Compact |           | ∆t <b>K</b> - ¹².⁵°F |                |                         | ∆tK - ¹⁴.⁵°F |         |                |                         | ∆tK - ¹6.5°F |         |                |                         |           | ΔtK     | - <sup>18</sup> .5°F |                         |
| (CFM) | L (ft)           | P (btu/h) | P (gpm)              | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h)    | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h)    | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm) | Manifold             | P (ft H <sub>2</sub> O) |
|       | 4.0              | -         | -                    | -              | -                       | -            | -       | -              | -                       | -            | -       | -              | -                       | -         | -       | -                    | -                       |
| İ     | 6.0              | 1935      | 0 773                | C <sup>2</sup> | 3 48                    | 2350         | 0 939   | C <sup>2</sup> | 4 88                    | 2799         | 1 118   | C <sup>2</sup> | 6.50                    | 2916      | 1 164   | C³                   | 2 27                    |
| 42    | 8.0              | 2232      | 0.892                | C <sub>3</sub> | 1.99                    | 2710         | 1 083   | C <sub>3</sub> | 2,80                    | 3197         | 1,277   | C <sub>3</sub> | 3,73                    | 3720      | 1 485   | C <sub>3</sub>       | 4.80                    |
| 1     | 10.0             | 2598      | 1 038                | C³             | 3,35                    | 3137         | 1 256   | C³             | 4 65                    | 3723         | 1 487   | C <sub>3</sub> | 6.17                    | 4015      | 1 603   | C⁴                   | 3,77                    |
|       | 11.8             | 2841      | 1 136                | C³             | 4.65                    | 3437         | 1 373   | C <sup>3</sup> | 6.43                    | 3819         | 1 525   | C⁴             | 4.09                    | 4390      | 1 753   | C⁴                   | 5.23                    |
|       | 4.0              | -         | -                    | -              | -                       | -            | -       | -              | -                       | -            | -       | -              | -                       | -         | -       | -                    | -                       |
|       | 6.0              | 2148      | 0.859                | C <sup>2</sup> | 4 18                    | 2575         | 1 209   | C <sup>2</sup> | 5 82                    | 2813         | 1 123   | C <sub>3</sub> | 2 10                    | 3250      | 1 298   | C³                   | 2 74                    |
| 62    | 8.0              | 2715      | 1 085                | C <sub>3</sub> | 2.75                    | 3293         | 1 316   | C <sub>3</sub> | 3 87                    | 3887         | 1 552   | C <sup>3</sup> | 5 16                    | 4533      | 1 810   | C <sup>3</sup>       | 6 63                    |
|       | 10.0             | 3302      | 1 320                | C³             | 4.94                    | 3740         | 1 494   | C <sup>4</sup> | 3 25                    | 4419         | 1,765   | C <sup>4</sup> | 4.34                    | 5144      | 2 054   | C <sup>4</sup>       | 5 59                    |
|       | 11.8             | 3437      | 1 373                | C <sup>4</sup> | 3 33                    | 4168         | 1 665   | C <sup>4</sup> | 4.65                    | 4968         | 1 984   | C <sup>4</sup> | 6.20                    | 5400      | 2 156   | C <sup>5</sup>       | 4 18                    |
|       | 4.0              | -         | -                    | -              | -                       | -            | -       | -              | -                       | -            | -       | -              | -                       | -         | -       | -                    | -                       |
|       | 6.0              | -         | -                    | -              | -                       | -            | -       | -              | -                       | -            | -       | -              | -                       | -         | -       | -                    | -                       |
| 84    | 8.0              | 2948      | 1 178                | C <sub>3</sub> | 3 16                    | 3546         | 1,417   | C <sub>3</sub> | 4,44                    | 4139         | 1 653   | C <sub>3</sub> | 5.88                    | 4556      | 1 819   | C⁴                   | 3 59                    |
|       | 10.0             | 3747      | 1,497                | C <sub>3</sub> | 6 16                    | 4272         | 1,707   | C <sup>4</sup> | 4.06                    | 5025         | 2,007   | C <sup>4</sup> | 5 42                    | 5538      | 2,211   | C <sup>5</sup>       | 3 65                    |
|       | 11.8             | 4064      | 1 624                | C <sup>4</sup> | 4.38                    | 4957         | 1 980   | C <sup>4</sup> | 6.14                    | 5531         | 2 209   | C <sup>5</sup> | 4 28                    | 6417      | 2 562   | C <sup>5</sup>       | 5 52                    |

Flow-adjusted waterside cooling effect table. Cooling circuit  $\Delta t = {}^{5}$ °F (Water in-out), nozzle pressure of  ${}^{0}.{}^{24}$  inH $_{2}$ O,  ${}^{1}$  x  ${}^{0}$ 4" air connection. For green values, a  ${}^{0}$ 3/4" manifold connection size is required.

### Cooling at 0.32 Nozzle Pressure

| Nozzle | Pressure         |           |                          |                |                         |              |         |                | Wa                      | iter      |         |                |                         |              |         |                |                         |
|--------|------------------|-----------|--------------------------|----------------|-------------------------|--------------|---------|----------------|-------------------------|-----------|---------|----------------|-------------------------|--------------|---------|----------------|-------------------------|
| 0,32   | inH₂O<br>Compact |           | ∆tK - <sup>12,5</sup> °F |                |                         | ∆tK - ¹⁴.5°F |         |                | ∆tK - ¹6.5°F            |           |         |                |                         | ∆tK - ¹8.5°F |         |                |                         |
| (CFM)  | L (ft)           | P (btu/h) | P (gpm)                  | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h)    | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h)    | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) |
|        | 4.0              | 1171      | 0.468                    | C <sup>2</sup> | 0,89                    | 1466         | 0.586   | C <sup>2</sup> | 1 30                    | 1757      | 0,702   | C²             | 1.78                    | 2044         | 0,816   | C²             | 2,32                    |
|        | 6.0              | 2076      | 0 829                    | C <sup>2</sup> | 3,90                    | 2522         | 1.008   | C <sup>2</sup> | 5_48                    | 2696      | 1 077   | C³             | 1.95                    | 3129         | 1 249   | C³             | 2 55                    |
| 42     | 8.0              | 2441      | 0 975                    | C <sub>3</sub> | 2,30                    | 2963         | 1,180   | C <sub>3</sub> | 3.24                    | 3460      | 1,382   | C <sub>3</sub> | 4.31                    | 3981         | 1 589   | C <sub>3</sub> | 5.51                    |
|        | 10.0             | 2861      | 1 143                    | C <sub>3</sub> | 3.97                    | 3416         | 1 365   | C <sub>3</sub> | 5.47                    | 3851      | 1 538   | C⁴             | 3,50                    | 4403         | 1 758   | C⁴             | 4.47                    |
|        | 11.8             | 3142      | 1 256                    | C <sup>3</sup> | 5,60                    | 3647         | 1 457   | C⁴             | 3,77                    | 4238      | 1 692   | C⁴             | 4.95                    | 4827         | 1,927   | C⁴             | 6.26                    |
|        | 4.0              | -         | -                        | -              | -                       | -            | -       | -              | -                       | -         | -       | -              | -                       | -            | -       | -              | 1                       |
|        | 6.0              | 2272      | 0.908                    | C²             | 4.54                    | 2781         | 1,111   | C²             | 6.37                    | 2954      | 1 180   | C <sup>3</sup> | 2.28                    | 3423         | 1 367   | C³             | 2 97                    |
| 62     | 8.0              | 2898      | 1 158                    | C³             | 3 05                    | 3519         | 1,406   | C <sup>3</sup> | 4.31                    | 4174      | 1,667   | C <sup>3</sup> | 5.75                    | 4492         | 1 794   | C³             | 3 47                    |
|        | 10.0             | 3556      | 1,421                    | C <sub>3</sub> | 5 65                    | 4055         | 1 620   | C <sup>4</sup> | 3 72                    | 4771      | 1 905   | C <sup>4</sup> | 4.96                    | 5515         | 2,202   | C <sup>4</sup> | 6.37                    |
|        | 11.8             | 3753      | 1 500                    | C <sup>4</sup> | 3.87                    | 4511         | 1,802   | C <sup>4</sup> | 5.38                    | 5098      | 2 036   | C <sup>5</sup> | 3.77                    | 5851         | 2 336   | C <sup>5</sup> | 4.84                    |
|        | 4.0              | -         | -                        | -              | -                       | -            | -       | -              | -                       | -         | -       | -              | -                       | -            | -       | -              | -                       |
|        | 6.0              | -         | -                        | -              | -                       | -            | -       | -              | -                       | -         | -       | -              | -                       | -            | -       | -              | -                       |
| 84     | 8.0              | 3102      | 1 240                    | C <sup>3</sup> | 3,43                    | 3776         | 1 508   | C <sup>3</sup> | 4.83                    | 4516      | 1 804   | C <sup>3</sup> | 6,45                    | 4810         | 1 921   | C <sup>4</sup> | 3,89                    |
|        | 10.0             | 3740      | 1 495                    | C <sup>4</sup> | 3 18                    | 4546         | 1 816   | C <sup>4</sup> | 4.49                    | 5382      | 2 149   | C <sup>4</sup> | 6.00                    | 5891         | 2 352   | C⁵             | 4 03                    |
|        | 11.8             | 4380      | 1 750                    | C <sup>4</sup> | 4.96                    | 5049         | 2 017   | C <sup>5</sup> | 3 61                    | 5960      | 2 380   | C <sup>5</sup> | 4 84                    | 6906         | 2 757   | C <sup>5</sup> | 6.24                    |

Flow-adjusted waterside cooling effect table. Cooling circuit  $\Delta t = {}^{5}$ °F (Water in-out), nozzle pressure of  ${}^{0}.{}^{32}$  inH $_{2}$ O,  ${}^{1}$  x  $\emptyset^{4}$ " air connection. For green values, a  $\emptyset^{3}$ 4" manifold connection size is required.

#### Cooling at 0.4 Nozzle Pressure

|       | Pressure º.4   |              |         |                |                         |           |         |                | Wa                      | ter       |         |                                  |                         |           |         |                |                         |
|-------|----------------|--------------|---------|----------------|-------------------------|-----------|---------|----------------|-------------------------|-----------|---------|----------------------------------|-------------------------|-----------|---------|----------------|-------------------------|
|       | H₂O<br>Compact | ∆tK - 12.5°F |         |                | ∆tK - ¹⁴.⁵°F            |           |         | ∆tK - ¹6.5°F   |                         |           |         | ∆t <b>K</b> - <sup>18</sup> .⁵°F |                         |           |         |                |                         |
| (CFM) | L (ft)         | P (btu/h)    | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm) | Manifold                         | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm) | Manifold       | P (ft H <sub>2</sub> O) |
|       | 4.0            | 1290         | 0 516   | C <sup>2</sup> | 1.04                    | 1614      | 0 645   | C <sup>2</sup> | 1 51                    | 1933      | 0,772   | C <sup>2</sup>                   | 2.07                    | 2247      | 0.897   | C <sup>2</sup> | 2,71                    |
|       | 6.0            | 2218         | 0.887   | C <sup>2</sup> | 4 37                    | 2691      | 1 075   | C <sup>2</sup> | 6 12                    | 2889      | 1 154   | C³                               | 2,19                    | 3347      | 1 336   | C³             | 2,86                    |
| 42    | 8.0            | 2585         | 1 033   | C <sub>3</sub> | 2.54                    | 3122      | 1 247   | C <sub>3</sub> | 3 57                    | 3654      | 1,459   | C³                               | 4.74                    | 4204      | 1 678   | C <sup>3</sup> | 6.04                    |
|       | 10.0           | 3023         | 1,208   | C <sup>3</sup> | 4.37                    | 3610      | 1,443   | C <sub>3</sub> | 6.01                    | 4071      | 1 626   | C⁴                               | 3,85                    | 4652      | 1 857   | C⁴             | 4.91                    |
|       | 11.8           | 3328         | 1,330   | C <sub>3</sub> | 6.17                    | 3860      | 1 542   | C⁴             | 4 15                    | 4486      | 1,792   | C⁴                               | 5,46                    | 5011      | 2 001   | C⁵             | 3.74                    |
|       | 4.0            | -            | -       | -              | -                       | -         | -       | -              | -                       | -         | -       | -                                | -                       | -         | -       | -              | -                       |
|       | 6.0            | 2488         | 0.994   | C²             | 5 27                    | 2722      | 1.088   | C <sup>3</sup> | 1 95                    | 3237      | 1 293   | C³                               | 2,65                    | 3749      | 1 497   | C³             | 3,45                    |
| 62    | 8.0            | 3118         | 1 246   | C <sup>3</sup> | 3 45                    | 3782      | 1 511   | C <sup>3</sup> | 4.86                    | 4487      | 1 792   | C³                               | 6.48                    | 4832      | 1 929   | C⁴             | 3 92                    |
|       | 10.0           | 3756         | 1 501   | C <sup>3</sup> | 6.21                    | 4291      | 1 714   | C <sup>4</sup> | 4 10                    | 5040      | 2 013   | C <sup>4</sup>                   | 5.46                    | 5564      | 2 221   | C⁵             | 3 69                    |
|       | 11.8           | 3967         | 1 585   | C <sup>4</sup> | 4.26                    | 4763      | 1 903   | C <sup>4</sup> | 5 91                    | 5388      | 2 152   | C⁵                               | 4 15                    | 6179      | 2 467   | C⁵             | 5 32                    |
|       | 4.0            | -            | -       | -              | 1                       | -         | 1       | -              | -                       | -         | 1       | 1                                | -                       | -         | -       | -              | -                       |
|       | 6.0            | -            | -       | -              | 1                       | -         | 1       | -              | -                       | -         | 1       | -                                | -                       | -         | -       | -              | -                       |
| 84    | 8.0            | 3394         | 1 357   | C <sup>3</sup> | 3,98                    | 4114      | 1 644   | C <sup>3</sup> | 5 56                    | 4527      | 1.808   | C <sup>4</sup>                   | 3 45                    | 5264      | 2 102   | C⁴             | 4 51                    |
|       | 10.0           | 4048         | 1 618   | C⁴             | 3 61                    | 4871      | 1,946   | C <sup>4</sup> | 5.03                    | 5765      | 2 302   | C⁴                               | 6.72                    | 6371      | 2 544   | C⁵             | 4 59                    |
|       | 11.8           | 4651         | 1 859   | C <sup>4</sup> | 5 51                    | 5315      | 2 124   | C⁵             | 3 95                    | 6259      | 2 500   | C⁵                               | 5 29                    | 7323      | 2 924   | C⁵             | 6 91                    |

Flow-adjusted waterside cooling effect table. Cooling circuit  $\Delta t = {}^{5}$ °F (Water in-out), nozzle pressure of  ${}^{9.4}$  inH $_{2}$ O,  ${}^{1}$  x  $\emptyset^{4}$ " air connection. For green values, a  $\emptyset^{3/4}$ " manifold connection size is required.

## **Heating Selection Tables**

### Heating at 0.24 Nozzle Pressure

|       | Pressure       |           |            |                         |           |            | Wa                      | iter      |                        |                         |           |                        |                         |
|-------|----------------|-----------|------------|-------------------------|-----------|------------|-------------------------|-----------|------------------------|-------------------------|-----------|------------------------|-------------------------|
| 0.24  | H₂O<br>Compact |           | ∆tK - 36°F |                         |           | ∆tK - 45°F |                         |           | ∆tK - <sup>54</sup> °F |                         |           | ΔtK - <sup>63</sup> °F |                         |
| (CFM) | L (ft)         | P (btu/h) | P (gpm)    | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm)    | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm)                | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm)                | P (ft H <sub>2</sub> O) |
|       | 4.0            | 755       | 0 190      | 0.10                    | 1007      | 0 190      | 0.10                    | 1258      | 0 190                  | 0 10                    | 1510      | 0 190                  | 0,10                    |
|       | 6.0            | 1246      | 0 190      | 0_17                    | 1662      | 0 190      | 0 17                    | 2087      | 0.232                  | 0.23                    | 2520      | 0,280                  | 0.32                    |
| 42    | 8,0            | 1605      | 0 190      | 0.24                    | 2117      | 0.236      | 0.34                    | 2633      | 0.293                  | 0,49                    | 3152      | 0 351                  | 0.65                    |
|       | 10.0           | 1903      | 0.212      | 0_37                    | 2481      | 0.279      | 0.58                    | 3064      | 0 341                  | 0.82                    | 3646      | 0,406                  | 1.08                    |
|       | 11.8           | 2117      | 0.236      | 0.53                    | 2746      | 0,306      | 0.82                    | 3378      | 0.376                  | 1 15                    | 4005      | 0 446                  | 1 51                    |
|       | 4.0            | -         | -          | -                       | -         | -          | -                       | -         | -                      | -                       | -         | -                      | -                       |
|       | 6.0            | 1389      | 0 190      | 0.17                    | 1857      | 0 207      | 0.19                    | 2344      | 0 261                  | 0.28                    | 2839      | 0,316                  | 0.39                    |
| 62    | 8,0            | 1954      | 0.217      | 0,30                    | 2573      | 0 286      | 0.48                    | 3198      | 0 356                  | 0,69                    | 3820      | 0,425                  | 0.91                    |
|       | 10.0           | 2359      | 0.262      | 0.54                    | 3073      | 0 342      | 0.84                    | 3786      | 0 421                  | 1 18                    | 4491      | 0,500                  | 1 56                    |
|       | 11.8           | 2632      | 0.293      | 0.78                    | 3409      | 0 379      | 1,19                    | 4180      | 0 465                  | 1,66                    | 4941      | 0 550                  | 2 18                    |
|       | 4.0            | -         | -          | -                       | -         | -          | -                       | -         | -                      | -                       | -         | -                      | -                       |
|       | 6,0            | 1376      | 0_190      | 0.17                    | 1842      | 0,205      | 0.19                    | 2334      | 0.260                  | 0.28                    | 2835      | 0,315                  | 0.39                    |
| 84    | 8.0            | 2133      | 0 237      | 0.35                    | 2819      | 0,314      | 0.56                    | 3507      | 0,390                  | 0.81                    | 4187      | 0,466                  | 1.07                    |
|       | 10.0           | 2716      | 0,302      | 0.69                    | 3535      | 0.393      | 1.07                    | 4345      | 0 483                  | 1,50                    | 5141      | 0 572                  | 1 97                    |
|       | 11.8           | 3086      | 0 343      | 1 03                    | 3985      | 0,444      | 1 57                    | 4869      | 0 542                  | 2 17                    | 5741      | 0 639                  | 2,83                    |

Flow-adjust waterside heating effect table. Heating circuit  $\Delta t$  = 18°F (Water in-out), nozzle pressure of °.24 inH<sub>2</sub>O, 1 x Ø4" air connection.

For red values, the flow rate has been adjusted to the recommended minimum flow of 0.19 gpm.

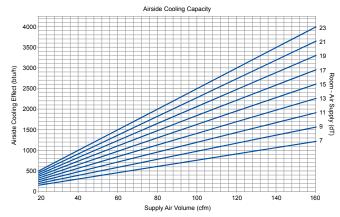
### Heating at 0.32 Nozzle Pressure

|       | Pressure                      |           |                        |                         |           |            | Wa                      | ater      |                        |                         |           |                        |                         |  |
|-------|-------------------------------|-----------|------------------------|-------------------------|-----------|------------|-------------------------|-----------|------------------------|-------------------------|-----------|------------------------|-------------------------|--|
|       | °.32 H <sub>2</sub> O Compact |           | ∆tK - <sup>36</sup> °F |                         |           | ∆tK - ⁴5°F |                         |           | ΔtK - <sup>54</sup> °F |                         |           | ∆tK - <sup>63</sup> °F |                         |  |
| (CFM) | L (ft)                        | P (btu/h) | P (gpm)                | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm)    | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm)                | P (ft H <sub>2</sub> O) | P (btu/h) | P (gpm)                | P (ft H <sub>2</sub> O) |  |
|       | 4.0                           | 837       | 0 190                  | 0.10                    | 1116      | 0 190      | 0.10                    | 1394      | 0 190                  | 0 10                    | 1673      | 0 190                  | 0.10                    |  |
| İ     | 6.0                           | 1331      | 0 190                  | 0 17                    | 1775      | 0.198      | 0 18                    | 2227      | 0.248                  | 0.26                    | 2687      | 0.299                  | 0.35                    |  |
| 42    | 8.0                           | 1707      | 0 190                  | 0.24                    | 2242      | 0.250      | 0.38                    | 2786      | 0.310                  | 0.54                    | 3330      | 0 371                  | 0.72                    |  |
| İ     | 10.0                          | 2012      | 0 224                  | 0.41                    | 2625      | 0.292      | 0 64                    | 3239      | 0.360                  | 0.90                    | 3849      | 0.428                  | 1 19                    |  |
| İ     | 11.8                          | 2243      | 0.250                  | 0.59                    | 2913      | 0 324      | 0.91                    | 3579      | 0.398                  | 1 27                    | 4236      | 0 471                  | 1 66                    |  |
|       | 4.0                           | -         | -                      | -                       | -         | -          | -                       | -         | -                      | -                       | -         | -                      | -                       |  |
|       | 6.0                           | 1528      | 0 190                  | 0.17                    | 2049      | 0 228      | 0.23                    | 2589      | 0.288                  | 0.34                    | 3136      | 0 349                  | 0.46                    |  |
| 62    | 8,0                           | 2091      | 0 233                  | 0.34                    | 2750      | 0 306      | 0.54                    | 3413      | 0 380                  | 0.77                    | 4072      | 0.453                  | 1 02                    |  |
|       | 10.0                          | 2501      | 0 278                  | 0.60                    | 3253      | 0 362      | 0,93                    | 3999      | 0 445                  | 1,30                    | 4737      | 0 527                  | 1,71                    |  |
|       | 11.8                          | 2784      | 0,310                  | 0.86                    | 3599      | 0,401      | 1,31                    | 4402      | 0,490                  | 1,82                    | 5193      | 0 578                  | 2.38                    |  |
|       | 4.0                           | -         | -                      | -                       | -         | -          | -                       | -         | -                      | -                       | -         | -                      | -                       |  |
|       | 6.0                           | 1546      | 0_190                  | 0.17                    | 2086      | 0.232      | 0.24                    | 2654      | 0.295                  | 0.35                    | 3228      | 0.359                  | 0.49                    |  |
| 84    | 8,0                           | 2346      | 0.261                  | 0,42                    | 3100      | 0 345      | 0.67                    | 3853      | 0,429                  | 0.95                    | 4561      | 0 507                  | 1.25                    |  |
|       | 10.0                          | 2911      | 0 324                  | 0.78                    | 3783      | 0,421      | 1,21                    | 4643      | 0.517                  | 1 69                    | 5431      | 0,604                  | 2.17                    |  |
|       | 11.8                          | 3279      | 0.365                  | 1,14                    | 4224      | 0.470      | 1.74                    | 5155      | 0 574                  | 2,40                    | 6006      | 0.668                  | 3.07                    |  |

Flow-adjust waterside heating effect table. Heating circuit  $\Delta t$  = <sup>18°</sup>F (Water in-out), nozzle pressure of  $^{\circ}$ .32 inH<sub>2</sub>O,  $^{1}$ x  $\cancel{O}^{4}$ " air connection. For red values, the flow rate has been adjusted to the recommended minimum flow of  $^{\circ}$ .19 gpm.

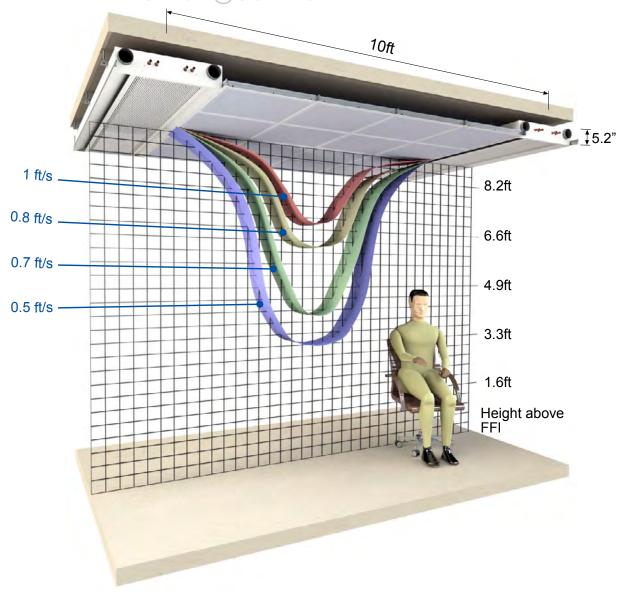
### Heating at 0.4 Nozzle Pressure

|       | Pressure       |                        |         |                         |            |         | Wa                      | iter       |         |                         |                        |         |                         |
|-------|----------------|------------------------|---------|-------------------------|------------|---------|-------------------------|------------|---------|-------------------------|------------------------|---------|-------------------------|
| 0,1   | H₂O<br>Compact | ΔtK - <sup>36</sup> °F |         |                         | ∆tK - ⁴5°F |         |                         | ΔtK - 54°F |         |                         | ∆tK - <sup>63</sup> °F |         |                         |
| (CFM) | L (ft)         | P (btu/h)              | P (gpm) | P (ft H <sub>2</sub> O) | P (btu/h)  | P (gpm) | P (ft H <sub>2</sub> O) | P (btu/h)  | P (gpm) | P (ft H <sub>2</sub> O) | P (btu/h)              | P (gpm) | P (ft H <sub>2</sub> O) |
|       | 4.0            | 893                    | 0 190   | 0.10                    | 1191       | 0 190   | 0.10                    | 1489       | 0 190   | 0_10                    | 1797                   | 0.200   | 0,11                    |
|       | 6.0            | 1372                   | 0 190   | 0 17                    | 1828       | 0 203   | 0.203                   | 2286       | 0 254   | 0_27                    | 2751                   | 0,306   | 0 37                    |
| 42    | 8.0            | 1741                   | 0 194   | 0.25                    | 2284       | 0 254   | 0.39                    | 2836       | 0.316   | 0.56                    | 3389                   | 0.377   | 0.74                    |
|       | 10.0           | 2052                   | 0.228   | 0,43                    | 2677       | 0.298   | 0.66                    | 3306       | 0.368   | 0,93                    | 3930                   | 0.437   | 1 23                    |
|       | 11.8           | 2295                   | 0.255   | 0,61                    | 2982       | 0 332   | 0.94                    | 3667       | 0,408   | 1,32                    | 4345                   | 0.483   | 1.74                    |
|       | 4.0            | -                      | -       | -                       | -          | -       | -                       | -          | -       | -                       | -                      | -       | -                       |
|       | 6.0            | 1624                   | 0.181   | 0.16                    | 2166       | 0.241   | 0.25                    | 2722       | 0,303   | 0.37                    | 3282                   | 0.365   | 0.50                    |
| 62    | 8,0            | 2155                   | 0.240   | 0.36                    | 2821       | 0 314   | 0.56                    | 3490       | 0 388   | 0.80                    | 4155                   | 0 462   | 1.06                    |
|       | 10.0           | 2549                   | 0.284   | 0.62                    | 3310       | 0,368   | 0.96                    | 4066       | 0 452   | 1,34                    | 4812                   | 0 535   | 1.76                    |
|       | 11.8           | 2834                   | 0 315   | 0.89                    | 3662       | 0,408   | 1 35                    | 4479       | 0 498   | 1.88                    | 5284                   | 0.588   | 2 45                    |
|       | 4.0            | -                      | -       | -                       | -          | -       | -                       | -          | -       | -                       | -                      | -       | -                       |
|       | 6.0            | 1709                   | 0 190   | 0 17                    | 2307       | 0.257   | 0.28                    | 2921       | 0 325   | 0.42                    | 3536                   | 0.393   | 0 57                    |
| 84    | 8.0            | 2463                   | 0 274   | 0.46                    | 3235       | 0.360   | 0.72                    | 4004       | 0 446   | 1.02                    | 4761                   | 0.530   | 1.34                    |
|       | 10.0           | 2991                   | 0 333   | 0.82                    | 3870       | 0 431   | 1,26                    | 4737       | 0 527   | 1.75                    | 5591                   | 0 622   | 2,28                    |
|       | 11.8           | 3342                   | 0 372   | 1 18                    | 4297       | 0 478   | 1.79                    | 5237       | 0.583   | 2 47                    | 6165                   | 0.686   | 3 21                    |

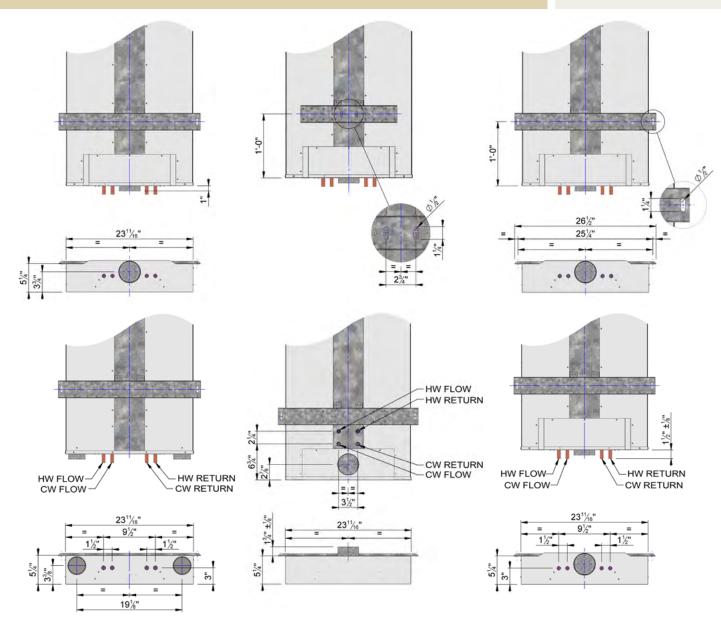

Flow-adjust waterside heating effect table. Heating circuit  $\Delta t$  =  $^{18}$ °F (Water in-out), nozzle pressure of °.4 inH<sub>2</sub>O, 1 x Ø4" air connection.

For red values, the flow rate has been adjusted to the recommended minimum flow of 0.19 gpm.

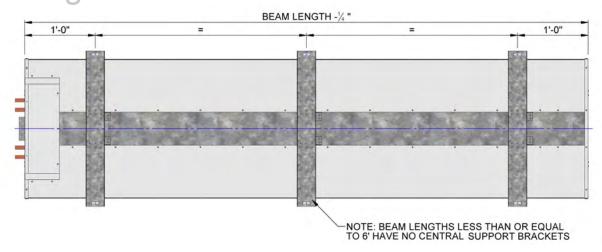
# Air Cooling Effect


Cooling effect supplied in the ventilation air

- 1. Start by calculating the required cooling effect that has to be supplied to the room in order to provide a certain temperature.
- <sup>2</sup>. Calculate any cooling effect that is provided by the ventilation air.
- 3. The remaining cooling effect has to be supplied by the



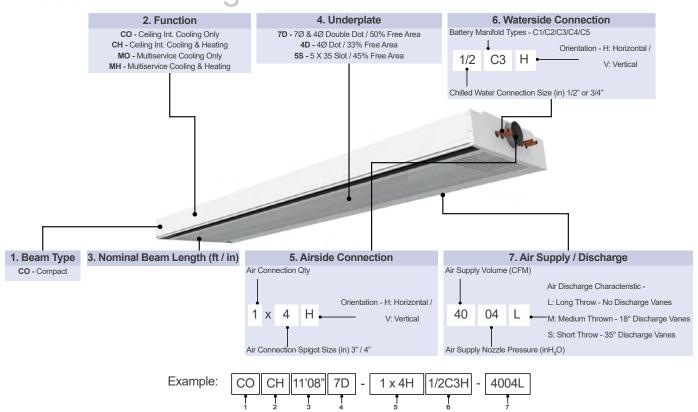

Air cooling effect as a function of airflow.


Scatter Diagram
Fresh Air Volume 14 CFM / ft @ 0.3 inH2O



## **Product Dimensions**




# **Mounting Details**



## Perforation Pattern Options



## **Product Ordering Codes**



## **Calculation Program**



|   | Compact Active Beam Data    |         |           |
|---|-----------------------------|---------|-----------|
|   | Air Connection              | 1 x 4"  |           |
|   | Product Overall Length      | 9' 4"   | ft inches |
|   | Manifold Type               | C4      |           |
| Ī | Air Discharge Throw         | М       |           |
|   | Nozzle Static Pressure      | 0.22    | " H₂O     |
|   | Fresh Air Supply Volume     | 70      | CFM       |
|   | Heating Function            | Yes     |           |
|   | Underplate Perforation Type | 43% OBR |           |

The FTF Group's calculation program for Compact is extremely user friendly.

Simply select from the drop down menu the "Air Connection" configuration. Air volumes in excess of  $^{84}$ .8 CFM and up to  $^{106}$  CFM should be  $^2$  x  $^{37}$  diameter.

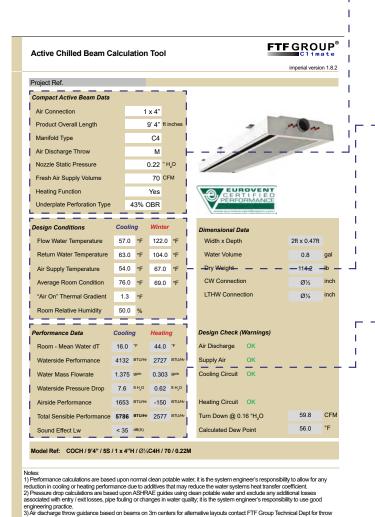
"Manifold Types" can be changed in the drop down menu for increased waterside cooling effect, however attention needs to be taken regarding resultant pressure drops (hydraulic resistance). If pressure drops need reducing, choose a higher numbered manifold (C<sup>5</sup> being the highest and C<sup>2</sup> being the lowest).

"Discharge Throw" can be S (short), M (medium) or L (long).

"Underplate Perforated" options can be found on page 10.

|   | Design Conditions         | Cooling |    | Heating |    |
|---|---------------------------|---------|----|---------|----|
|   | Flow Water Temperature    | 57.0    | °F | 122.0   | °F |
|   | Return Water Temperature  | 63.0    | °F | 104.0   | °F |
| - | Air Supply Temperature    | 54.0    | °F | 67.0    | °F |
|   | Average Room Condition    | 76.0    | °F | 69.0    | °F |
|   | "Air On" Thermal Gradient | 1.3     | °F |         |    |
|   | Room Relative Humidity    | 50.0    | %  |         |    |

Complete your project data in the "Design Conditions" section. Please note that the "Air On" Thermal Gradient should not be used in normal instances.


|   | Performance Data           | Cooling | 1                   | Heating |                     |  |
|---|----------------------------|---------|---------------------|---------|---------------------|--|
|   | Room - Mean Water dT       | 16.0    | °F                  | 44.0    | °F                  |  |
|   | Waterside Performance      | 4132    | BTU/Hr              | 2727    | BTU/Hr              |  |
| _ | Water Mass Flowrate        | 1.375   | gpm                 | 0.303   | gpm                 |  |
|   | Waterside Pressure Drop    | 2.61    | ft H <sub>2</sub> O | 0.62    | ft H <sub>2</sub> O |  |
|   | Airside Performance        | 1653    | BTU/Hr              | -150    | BTU/Hr              |  |
|   | Total Sensible Performance | 5786    | BTU/Hr              | 2577    | BTU/Hr              |  |
|   | Sound Effect Lw            | < 35    | dB(A)               |         |                     |  |

"Performance Data" will then be automatically calculated. Likewise "Dimensional Data" will also be calculated.

Finally, the "Design Check" should read "Ok" in green, or detail some warnings in red.

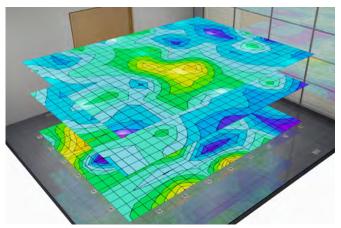
Calculation programs for Compact are available upon request.

Contact our technical department or complete an application request form at www.ftfgroup.us from the relevant link on our home page.



## **Project Specific Testing Facility**

The FTF Group have <sup>3</sup> number state-of-the-art Climatic Testing Laboratories at one if its subsidiary companies predominantly situated at the prestigious Pride Park. Each laboratory has internal dimensions of <sup>20</sup>. Tft x <sup>18</sup>. Tft x <sup>10</sup>. If high and includes a thermal wall so that both core and perimeter zones can be modeled. The test facilities are fixed in overall size and construction therefore simulation of a buildings specific thermal mass cannot be completed, it should, however be noted that a specific project can be simulated more accurately by recessing the floor and reducing the height at necessary.


#### **Project Specific Testing**

Project specific mock-up testing is a valuable tool which allows the Client to fully asses the proposed system and determine the resulting indoor quality and comfort conditions; the physical modeling is achieved by installing a full scale representation of a building zone complete with internal & external heat gains (Lighting, Small Power, Occupancy & Solar Gains).

The installed mock-up enables the client to verify the following:

- Product performance under project specific conditions.
- Spatial air temperature distribution.
- Spatial air velocities.
- Experience thermal comfort.
- Project specific aesthetics.
- Experience lighting levels (where relevant).
- Investigate the specific design and allow the system to be enhanced.







The project-specific installation and test is normally conducted to verify:

- Product capacity under design conditions.
- Comfort levels air temperature distribution.
  - thermal stratification.
  - draft risk.
  - radiant temperature analysis.
- Smoke test video illustrating air movement.



## **Photometric Testing Facility**

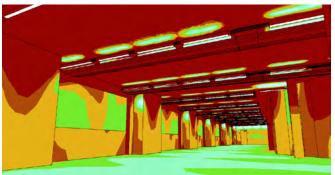
The FTF Group's technical facility at Pride Park, Derby also has two Photometric test laboratories which are used to evaluate the performance of luminaires. To measure the performance, it is necessary to obtain values of light intensity distribution from the luminaire. These light intensity distributions are used to mathematically model the lighting distribution envelope of a particular luminaire. This distribution along with the luminaires efficacy allows for the generation of a digital distribution that is the basis of the usual industry standard electronic file format. In order to assess the efficacy of the luminaire it is a requirement to compare the performance of the luminaire against either a calibrated light source for absolute output or against the "bare" light source for a relative performance ratio.

The industry uses both methods. Generally absolute lumen outputs are used for solid state lighting sources and relative lighting output ratios (LOR) are used for the more traditional sources. Where the LOR method is chosen then published Lamp manufacturer's data is used to calculate actual lighting levels in a design.

The intensity distribution is obtained by the use of a Goniophotometer to measure the intensity of light emitted from the surface of the fitting at pre-determined angles. The light intensity is measured using either a photometer with a corrective spectral response filter to match the CIE standard observer curves or our spectrometer for LED sources.

Luminaire outputs are measured using out integrating sphere for small luminaires or out large integrator room for large fittings and Multiservice Chilled Beam. For both methods we can use traceable calibrated radiant flux standards for absolute comparisons.

All tests use appropriate equipment to measure and control the characteristics of the luminaire and include air temperature measurements, luminaire supply voltage, luminaire current and power. Thermal characteristics of luminaire components can be recorded during the testing process as required.


A full test report is compiled and supplied in "locked" PDF format. Data is collected and correlated using applicable software and is presented electronically to suit, usually in Eulumdat, CIBSE TM¹⁴ or IESN standard file format.

The FTF Groups technically facility also conducts photometric tests in accordance with CIE <sup>127</sup>;<sup>2007</sup> and BS EN <sup>13032</sup>-<sup>1</sup> and sound engineering practice as applicable. During the course of these tests suitable temperature measurements of parts of LEDs can be recorded. These recorded and plotted temperature distributions can be used to provide feedback and help optimize the light output of solid state light source based luminaires which are often found to be sensitive to junction temperature.









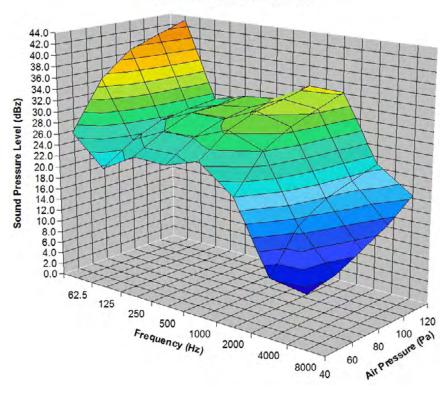


## **Acoustic Testing Facility**

The Acoustic Test Room at the FTF Groups Technical Facility is a hemi-anechoic chamber which utilizes sound absorbing acoustic foam material in the shape of wedges to provide an echo free zone for acoustic measurement; the height of the acoustic foam wedges has a direct relationship with the maximum absorption frequency, hence the FTF Group has the wedges specifically designed to optimize the sound absorption at the peak frequency normally found with our Active Chilled Beam products.

The use of acoustic absorbing material within the test room provides the simulation of a quiet open space without "reflections" which helps to ensure sound measurements from the sound source are accurate, in addition the acoustic material also helps reduce external noise entering the test room meaning that relatively low noise levels of sound can be accurately measured.

The acoustic facilities allow the FTF Group to provide express in-house sound evaluation so that all products, even project specific designs can be assessed and optimized.


To ensure accuracy the FTF Group only use Class <sup>1</sup> measurement equipment which allows sound level measurements to be taken at <sup>11</sup> different <sup>1</sup>/<sub>3</sub> octave bands between <sup>16</sup> Hz to <sup>16</sup> kHz, with A, C and Z (un-weighted) simultaneous weightings.

In addition to the above, the FTF Group also send their new products for specialist third party Acoustic Testing. The results of which are very close and within measurement tolerances to that of FTF Groups in-house measurement of sound.





**Unweighted Sound Pressure Level** 







Frenger Systems (trading as FTF Group Climate) participates in the ECC program for Chilled Beams. Check ongoing validity of certificate: www.eurovent-certification.com or www.certiflash.com ©certiflashi

# FTF GROUP®

#### American Office

FTF Group Climate 1501 Broadway, Times Square 12th Floor New York NY 10036 United States of America

tel: +00 1 646 571 2151 fax: +00 1 646 571 2001 sales@ftfgroup.us www.ftfgroup.us

#### **UK Head Office**

Frenger System Ltd Riverside Road Pride Park Derby DE24 8HY

tel: +44 0 1332 295 678 fax: +44 0 1332 381 054 sales@frenger.co.uk www.frenger.co.uk

### **Australian Office**

Frenger Level 20 Tower 2 201 Sussex Street Sydney NSW 2000 Australia

tel: +61 2 9006 1147 fax: +61 2 9006 1010 sales@frenger.com.au www.frenger.com.au

Frenger Systems is a wholly owned subsidiary of the **FTF Group Ltd.** Registered No. 646 6229 20

www.FTFgroup.us